Event time:

Tuesday, March 30, 2010 - 12:30pm to Monday, March 29, 2010 - 8:00pm

Location:

431 DL

Speaker:

Will Cavendish

Speaker affiliation:

Princeton University

Event description:

The Weil-Petersson metric on Teichmuller space is a negatively curved Kahler metric that relates in interesting ways to hyperbolic geometry in dimensions 2 and 3. Though this metric is incomplete, its completion is a CAT(0) metric space on which the mapping class group acts cocompactly, and the quotient of this completion by the mapping class group is the Deligne-Mumford compactification of moduli space M(g,n). I will give a brief introduction to Weil-Petersson geometry and discuss joint work with Hugo Parlier that computes the growth rate of the WP diameter of M(g,n) as g and n tend to infinity.