Counterexamples to Strichartz estimates and gallery waves for the irrotational compressible Euler equation in a vacuum setting

Mon Apr 28, 2025 4:00 p.m.—5:00 p.m.
Exterior of Sheffield-Sterling-Strathcona Hall featuring a stone carving of Yale's coat of arms and motto

This event has passed.

Seminar: 
Analysis

Event time: 
Monday, April 28, 2025 - 4:00pm

Location: 
KT 205

Speaker: 
Ovidiu-Neculai Avadanei

Event description: 
We consider the free boundary problem for the irrotational compressible Euler equation in a vacuum setting. By using the irrotationality condition in the Eulerian formulation of Ifrim and Tataru, we derive a formulation of the problem in terms of the velocity potential function, which turns out to be an acoustic wave equation that is widely used in solar seismology. This paper is a first step towards understanding what Strichartz estimates are achievable for the aforementioned equation. Our object of study is the corresponding linearized problem in a model case, in which our domain is represented by the upper half-space. For this, we investigate the geodesics corresponding to the resulting acoustic metric, which have multiple periodic reflections next to the boundary. Inspired by their dynamics, we define a class of whispering gallery type modes associated to our problem, and prove Strichartz estimates for them. By using a construction akin to a wave packet, we also prove that one necessarily has a loss of derivatives in the Strichartz estimates for the acoustic wave equation satisfied by the potential function. In particular, this suggests that the low regularity well-posedness result obtained by Ifrim and Tataru might be optimal, at least in a certain frequency regime. To the best of our knowledge, these are the first results of this kind for the irrotational vacuum compressible Euler equations.

Research Area(s): 
Analysis & PDE