Critical exponent gap

Mon Oct 21, 2024 4:15 p.m.—5:15 p.m.
Exterior of Sheffield-Sterling-Strathcona Hall featuring a stone carving of Yale's coat of arms and motto

This event has passed.

Seminar: 
Group Actions, Geometry and Dynamics

Event time: 
Monday, October 21, 2024 - 4:15pm

Location: 
KT205

Speaker: 
Omri Solan

Speaker affiliation: 
Hebrew University

Event description: 
We will discuss the following result. For every geometrically finite Kleinian group Γ < SL2(ℂ) there is εΓ such that for every g ∈ SL2(ℂ) the intersection  gΓg-1 ∩ SL2(ℝ) is either a lattice or a has critical exponent δ(gΓg-1 ∩ SL2(ℝ)) ≤ 1-εΓ

This result extends Margulis-Mohammadi and Bader-Fisher-Milier-Strover. 

We will discuss some ideas of the proof. We will focus on the applications of a new ergodic component, of preservation of entropy in a direction.