Zagier’s formula for multiple zeta values and its odd variant revisited

Tue Apr 5, 2022 4:30 p.m.—5:30 p.m.
Exterior of Sheffield-Sterling-Strathcona Hall featuring a stone carving of Yale's coat of arms and motto

This event has passed.

Seminar: 
Algebra and Number Theory Seminar

Event time: 
Tuesday, April 5, 2022 - 4:30pm

Speaker: 
Cezar Lupu

Speaker affiliation: 
Beijing Institute of Mathematical Sciences and Applications (BIMSA) & Yau Mathematical Sciences Center (YMSC), Tsinghua University

Event description: 
In this talk, we revisit the famous Zagier formula for multiple zeta values (MZV’s) and its odd variant for multiple t-values which is due to Murakami.
Zagier’s formula involves a specific family of MZV’s which we call nowadays the Hoffman family, which can be expressed as a Q-linear combination of products π2mζ(2n+1) with m+n=a+b+1. This formula for H(a,b) played a crucial role
in the proof of Hoffman’s conjecture by F. Brown, and it asserts that all multiple zeta values of a given weight are Q-linear combinations of MZV’s of the same weight involving 2’s and 3’s.
Similarly, in the case of multiple t-values (the odd variant of multiple zeta values), very recently, Murakami proved a version of Brown’s theorem (Hoffman’s conjecture) which states that every multiple zeta value is a Q-linear combination of elements. Again, the proof relies on a Zagier-type
evaluation for the Hoffman’s family of multiple t-values.

We show the parallel of the two formulas for H(a,b) and T(a,b) and derive elementary proofs by relating both of them to a surprising cotangent integral. Also, if time will allow, we give a brief account on how these integrals can provide us some arithmetic information about ζ(2k+1)π2k+1. This is a joint work with Li Lai and Derek Orr.

Research area(s): 
Algebraic Geometry 
Number Theory
Representation Theory